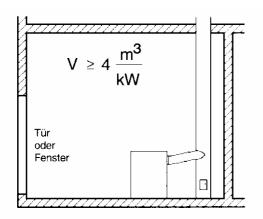
Kapitel VI: Aufstellräume für Feuerungsanlage / Heizräume / Brennstofflagerräume


VI.1 Verbrennungsluftversorgung von Feuerstätten

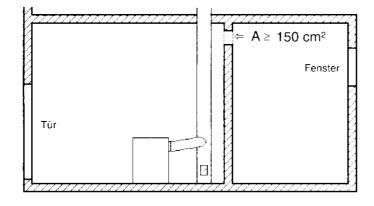
Grundsatz: Für Feuerstätten in Gebäuden muß eine ausreichende Verbrennungsluftversorgung

sichergestellt sein.

Für raumluftabhängige Feuerstätten gilt:

Gesamtnennwärmeleistung ≤ 35 kW

mindestens eine Tür ins Freie

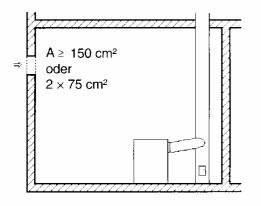

oder

ein Fenster das geöffnet werden kann

und

einen Rauminhalt von mindestens **4 m³ je 1 kW** Gesamtnennwärmeleistung

oder


als Verbrennungsluftverbund:

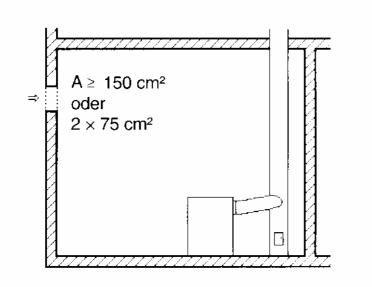
Verbrennungsluftöffnungen von **mind.** 150 cm² zwischen dem Aufstellraum und Räumen mit Verbindung zum Freien

und

der Rauminhalt des Verbrennungsluftverbundes muß **mind.** 4 **m³** je 1 kW Gesamtnennwärmeleistung haben

oder

eine ins Freie führende Öffnung von mindestens 150 $\,\mathrm{cm^2}$


oder

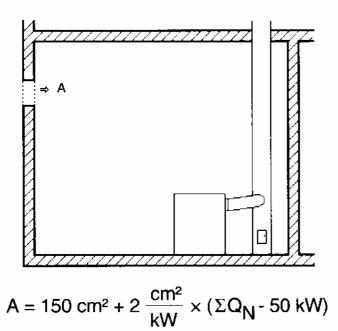
zwei Öffnungen von je 75 cm²

oder

Leitungen ins Freie mit äquivalenten Querschnitten

Gesamtnennwärmeleistung > 35 kW ≤ 50 kW

eine ins Freie führende Öffnung von mindestens 150 cm²


oder

zwei Öffnungen von je 75 cm²

oder

Leitungen ins Freie mit äquivalenten Querschnitten

Gesamtnennwärmeleistung > 50 kW

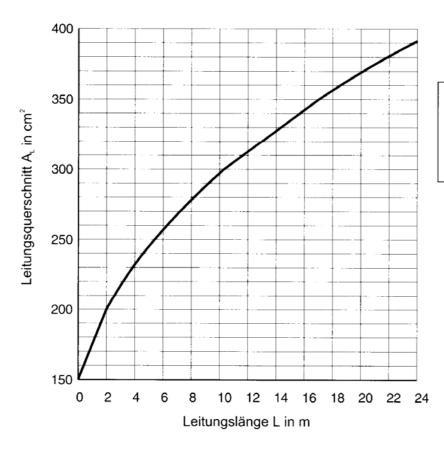
 $\Sigma Q_N =$ Summe aller Nennwärmeleistungen in kW

eine ins Freie führende Öffnung von mindestens 150 cm² und für jedes über 50 kW hinausgehende kW Nennwärmeleistung je 2 cm²

oder

Leitungen ins Freie mit äquivalenten Querschnitten

Der erforderliche Querschnitt darf auf höchstens zwei Öffnungen oder Leitungen aufgeteilt werden.

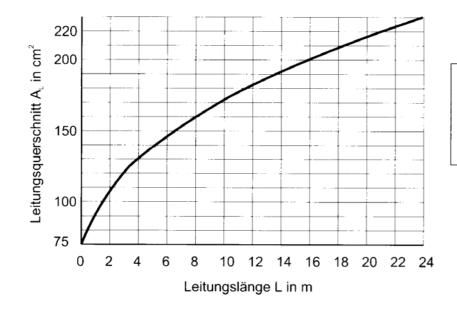

Verbrennungsluftöffnungen und –leitungen dürfen nicht verschlossen oder zugestellt werden. Der erforderliche Querschnitt darf durch Gitter nicht verengt werden.

Die vorgenannten Bedingungen gelten nicht für offene Kamine.

Energie-, Gebäudetechnik Dipl.-Ing. Uwe Mayer

Äquivalente Leitungsquerschnitte in Abhängigkeit von der Leitungslänge (nach TRGI `86/96)

Diagramm 1: Quadratische Leitungen entspr. einer freien Öffnung von 150 cm²


$$A_L = A \times (1 + 15.8 \times \frac{L}{A_L^{0.7}})^{0.5}$$

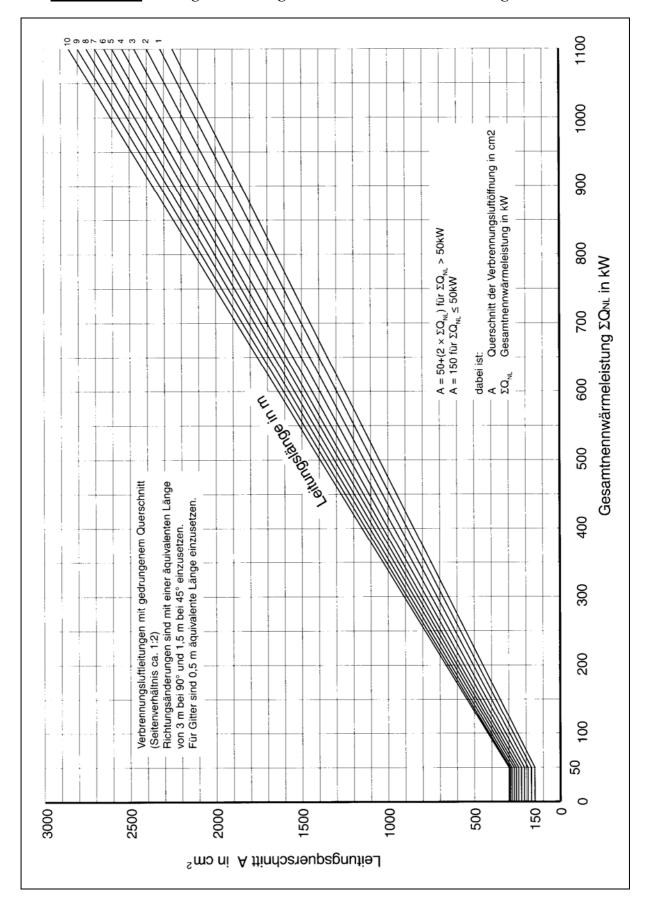
- A_L Querschnitt der Verbrennungsluftleitung in cm²
- A Querschnitt der Verbrennungsluftöffnung = 150 cm²
- L Länge der Verbrennungsluftleitung in m

Richtungsänderungen sind mit äquivalenten Leitungslängen zu berücksichtigen:

 $90^{\circ} = 3,0 \text{ m}$ $45^{\circ} = 1,5 \text{ m}$ Gitter = 0,5 m

<u>Diagramm 2:</u> Quadratische Leitungen entsprechend einer freien Öffnung von 75 cm²

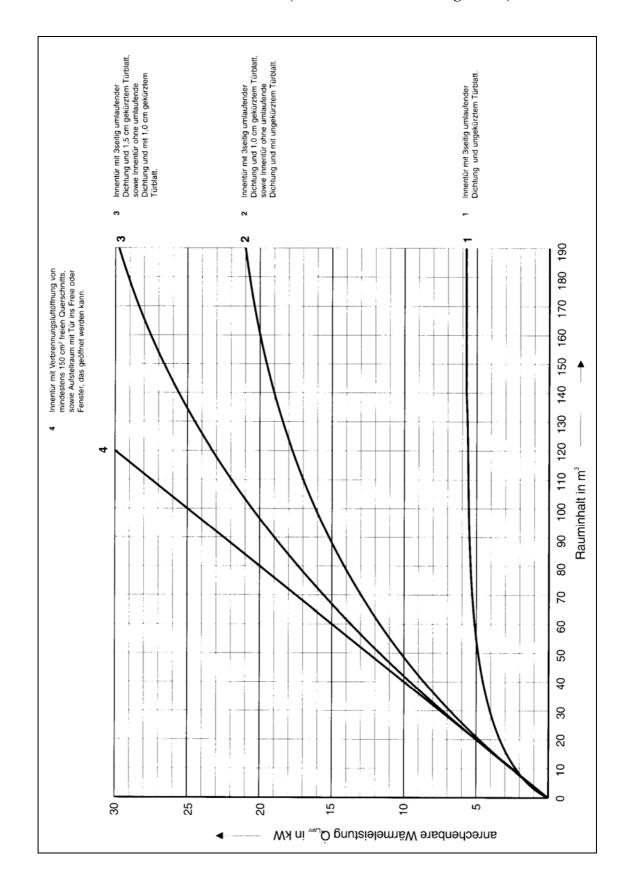
$$A_L = A \times (1 + 15.8 \times \frac{L}{A_1^{0.7}})^{0.5}$$


- A_L Querschnitt der Verbrennungsluftleitung in cm²
- A Querschnitt der Verbrennungsluftöffnung = 75 cm²
- L Länge der Verbrennungsluftleitung in m

Richtungsänderungen sind mit äquivalenten Leitungslängen zu berücksichtigen:

 $90^{\circ} = 3.0 \text{ m}$ $45^{\circ} = 1.5 \text{ m}$ Gitter = 0.5 m

Energie-, Gebäudetechnik Dipl.-Ing. Uwe Mayer


<u>Diagramm 3:</u> Leitungen für Anlagen mit einer Nennwärmeleistung von > 50 kW

FH O/O/W-Standort Oldbg. FB Architektur - WS 06/07

Kapitel VI: Aufstellräume für Feuerungsanlagen / Heizräume / Brennstofflagerräume Energie-, Gebäudetechnik Dipl.-Ing. Uwe Mayer

<u>Diagramm 4:</u> Anrechenbare Wärmeleistungen aus dem Rauminhalt der Verbrennungslufträume im Verbund (in der FeuVO nicht vorgesehen)

FH O/O/W-Standort Oldbg.		Energie-, Gebäudetechnik
FB Architektur - WS 06/07	Heizräume / Brennstofflagerräume	DiplIng. Uwe Mayer

VI.2 Aufstellräume für Feuerungsanlagen / Heizräume

Wo dürfen keine Feuerungsanlagen aufgestellt werden?

Nach FeuVO: 1. In Treppenräumen von Wohngebäuden mit mehr als 2 Wohnungen

2. In notwendigen Fluren

3. In Garagen

Ausnahme: Bei raumluft**unabhängigen** Anlagen und die Temperatur an der

Außenfläche der gesamten Anlage ist kleiner 300°C

Zusätzlich nach TRGI:

- Raumluftabhängige Gasgeräte mit Strömungssicherung dürfen nicht in Räumen die über Einzelschachtanlagen (DIN 18017 Teil 1) entlüftet aufgestellt werden.

Ausnahme: Die Abgase werden über diesen Schacht abgeführt und die Luftversorgung ist gesichert.

- **Raumluftabhängige Gasgeräte** dürfen nicht aufgestellt werden in Aborte oder Bäder ohne Fenster die über Sammelschächte ohne Motorkraft entlüftet werden
- In Räumen oder Raumteilen, in denen sich **leicht entzündliche Stoffe** in solchen Mengen befinden, daß eine Entzündung eine besondere Gefahr darstellt.
- In Räumen in denen sich **explosionsfähige Stoffe** befinden.
- In Räumen in denen **offene Kamine und Kaminöfen ohne eigene Verbrennungsluftversorgung** aufgestellt sind, sowie mit Räumen, die mit der Nutzungseinheit in Verbindung stehen.

Ausnahme: Kachelöfen mit fiktiver NL von 1 kW je m² Oberfläche,

Kamine und Kaminöfen mit fiktiver NL von 340 kW je m² Feuerraumöffnung.

Anforderungen an Räume für Feuerstätten mit einer Nennwärmeleistung > 50 kW

Unterschieden wird in 1. Aufstellräume: Gültig für flüssige und gasförmige Brennstoffe

2. Heizräume: Gültig für feste Brennstoffe

Zu 1. Anforderungen an Aufstellräume

- Räume dürfen nicht anderweitig genutzt werden, außer noch für die zusätzliche Aufstellung von WP, BHKW und der Lagerung von Brennstoffen,
- keine Öffnung gegenüber anderen Räumen, außer Türen,
- Türen müssen dicht und selbstschließend sein,
- Notschalter für Brenner und Brennstofffördereinrichtung außerhalb des Raumes vorsehen,
- Hinweisschild "Notschalter-Feuerung" vorsehen,
- bei Heizöllagerung, wenn diese nur vom Aufstellraum der Feuerstätte zu begehen ist: Notschalter oder Absperrvorrichtung für die Heizölzufuhr außerhalb des Raumes vorsehen.

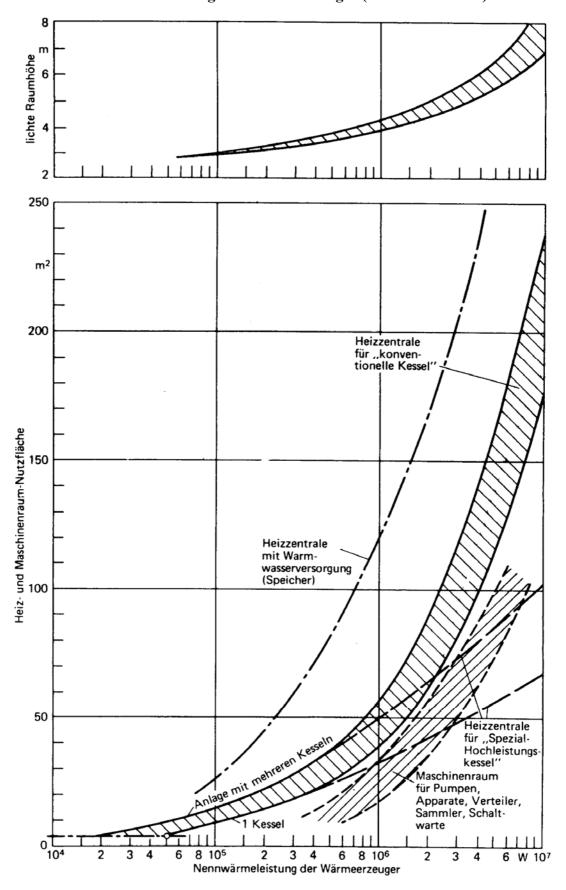
Zu 2. Anforderungen an Heizräume

- Räume dürfen nicht anderweitig genutzt werden, außer noch für die zusätzliche Aufstellung von WP, BHKW und der Lagerung von Brennstoffen,
- mit Aufenthaltsräumen, mit Treppenräumen notwendiger Treppen nicht unmittelbar in Verbindung stehen.
- Rauminhalt mindestens 8 m³,

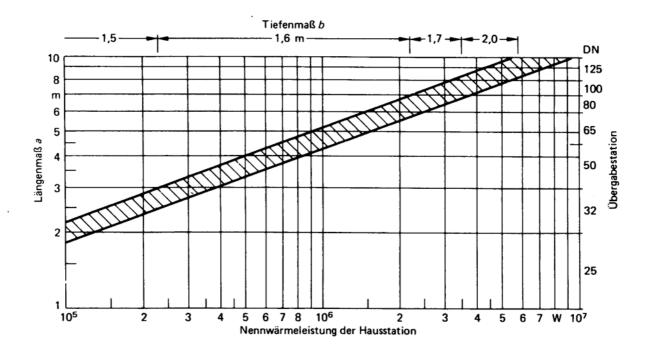
FH O/O/W-Standort Oldbg.		Energie-, Gebäudetechnik
FB Architektur - WS 06/07	Heizräume / Brennstofflagerräume	DiplIng. Uwe Mayer

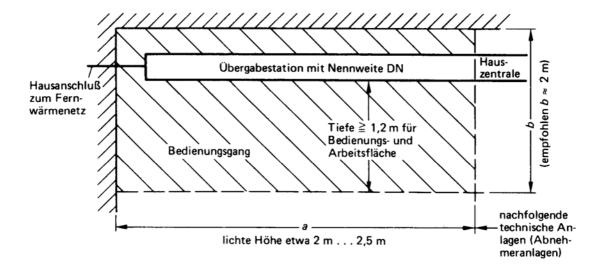
- lichte Raumhöhe mindestens 2 m,
- einen Ausgang ins Freie oder in einen Flur (Anforderungen eines notwendigen Flures),
- Türen müssen in Fluchtrichtung aufschlagen,
- tragende Wände, Stützen sowie Decken und Böden müssen feuerbeständig sein,
- Öffnungen müssen, soweit sie nicht unmittelbar ins Freie führen, feuerhemmend und selbstschließend sein,
- je eine obere und untere Öffnung als Verbrennungsluftversorgung ins Freie von mindestens je 150 cm² freier Querschnitt (auch als Lüftungsleitung möglich),
- Lüftungsleitungen, die durch andere Räume führen, müssen mindestens eine Feuerwiderstandsdauer von 90 Minuten haben,
- Lüftungsleitungen dürfen nicht mit anderen Räumen verbunden sein,
- Lüftungsleitungen dürfen nicht der Lüftung anderer Räume dienen,
- Lüftungsleitungen die für die **Belüftung anderer Räume dienen** und durch den Heizraum geführt werden, müssen
 - eine Feuerwiderstandsdauer von mindestens 90 Minuten haben oder
 - eine selbsttätige Absperrvorrichtung für eine Feuerwiderstandsdauer von 90 Minuten haben (Feuerschutzklappen)
 und
 - ohne Öffnungen zum Heizraum sein,
- werden in Heizräumen auch Feuerstätten für flüssige oder gasförmige Brennstoffe aufgestellt, müssen für diese Feuerungen die entsprechenden Notabschaltungen außerhalb des Raumes einschl. der Hinweisschilder vorgesehen werden.

Nutzflächen für Heizzentralen


Mit dem Beginn der Planung eines Gebäudes ist auch die Art der Beheizung des Gebäudes festzulegen, da die benötigte Nutzfläche für die Heizzentrale hiervon abhängig ist. Folgende Entscheidungen sollten dabei getroffen werden:

- Art der Beheizung (z.B. nur Heizung, Heizung mit WW-Bereitung, Heizung/Lüftung),
- Lage der Heizzentrale,
- Wahl des Brennstoffes,
- Lage des Brennstofflagers.


Als Größenordnung für die erste Planung können aus dem VDI-Blatt 2050 Blatt 1 Anhaltswerte für Mindestnutzflächen von Heizzentralen entnommen werden. Die tatsächliche Größe ergibt sich letztendlich aus den zu planendem Anlagenkonzept und der Wahl der einzelnen Anlagenkomponenten.


Energie-, Gebäudetechnik Dipl.-Ing. Uwe Mayer

Mindestnutzfläche für Heiz- und Maschinenräume in Abhängigkeit von der Nennwärmeleistung der Wärmeerzeuger (VDI 2050 Blatt 1)

Nutzflächenmaße für Übergabestationen bei einer Fernwärmeversorgung (VDI 2050 Blatt 1)

Erläuterungen:

Hausstation: Übergabestation und Hauszentrale.

Die Nutzfläche für eine Hausstation ist zwischen dem Wärmelieferer und dem Abnehmer nach dem Platzbedarf der Anlagenteile abzustimmen.

Das Diagramm gibt nur Anhaltswerte für die Nennwärmeleistung einer Übergabestation in Abhängigkeit von der Nennweite DN der Hausanschlußleitungen.

FH O/O/W-Standort Oldbg.	Kapitel VI: Aufstellräume für Feuerungsanlagen /	Energie-, Gebäudetechnik
FB Architektur - WS 06/07	Heizräume / Brennstofflagerräume	DiplIng. Uwe Mayer

Flächenbedarf von Heizzentralen in Abhängigkeit der Heizleistungen

(aus: Prof. Dipl.-Ing. Klaus Daniels "Gebäudetechnik" 1996)

Kesselhäuser

Kesselleistung	Heizraum	Heizraum		Raum für Ausde	hnungsgefäße
	Grundfläche (m²)	Höhe (m)	WW-Bereitung Grundfläche (m²)	Grundfläche (m²)	Höhe(m)
bis 25.000 W 25.000 - 45.000 W 45.000 - 70.000 W 75.000 - 95.000 W 95.000 - 116.000 W	6 6- 11 11- 14 14- 16 16- 18	2,50		2,00 2,00	1,60 1,60
bei Mehrkesselanlagen 0,12 - 0,35 MW 0,35 - 0,95 MW 0,95 - 1,75 MW 1,75 - 5,80 MW 5,80 - 8,70 MW über 8,70 MW	24 - 30 30 - 60 60 - 75 75 - 160 160 - 200 nach Möglichkei	3,00 3,00 3,50 3,50 4,00 t besondere He	10 - 12 12 - 20 20 - 37 37 - 80 80 - 110 pizhäuser oder Gebäude	4.00 7,00 9,00 18,00 20,00 teile planen	2,00 2,20 2,50 2,80 3,80

Fernwärmeübergabe

Wärmeleistung	Übergabestation	und Verteiler be	ei Fernwärmeanschluß	Unterstation	
	Grundfläche (m²)	*)	Höhe (m)	Grundfläche (m²)	Höhe (m)
bis 0,12 MW	6	10	2,40	5	2,40
0,12 - 0,35 MW	6 - 12	10 - 15	2,40	5 - 8	2,40
0,35 - 0,95 MW	12 - 24	15 - 40	2,50 *) (3,00)	8 - 18	2,50 *) (3,00
0,95 - 1,75 MW	24 - 36	40 - 58	2,80 *) (3,50)	18 - 32	2,80 *) (3,50
1,75 - 5,80 MW	36 - 60	58 - 120	3,00 *) (3,50)		
5,80 - 11,60 MW	60 - 120	120 - 200	4,00		
11,60 - 17,40 MW	120 - 200	200 - 300	4,00		

^{*)} Die erste Spalte gilt für das Fernwärmemedium Dampf, die zweite für das Fernwärmemedium Heißwasser

Nachfolgend aufgeführte Anlagenteile sind bei der Raumgrößenbestimmung zu berücksichtigen:

- Kesselanlage (Ein- oder Mehrkesselanlage)
- Abgas- bzw. Schornsteinanlage
- Verteiler und Sammler
- Ausdehnungsgefäße
- Warmwasser Speicher
- Hauptpumpen als Sockelpumpen
- Heizwasseraufbereitungsanlagen
- Schaltschränke für Steuer- und Regelanlagen
- Sekundäreinrichtungen bei Feststoffanlagen (Bunker, Asche, Fördereinrichtungen usw.)
- Brennstofflagerräume für feste bzw. flüssige Brennstoffe
- Gasübergaberaum bei gasförmigen Brennstoffen
- Wärmetauscher für Sonderanlagen

Bauliche Voraussetzungen für eine Heizzentrale:

- Ausreichendes Raumangebot für Betrieb und Wartung der Wärmeerzeuger
- Ausreichende Transportwege und Möglichkeiten für die Einbringung von Wärmeerzeugern, Maschinen, Behältern und Apparaten während der Bauzeit und später
- Bedarfsgerechte Beleuchtung, besonders in den Bereichen der Schalt- und Regelanlagen (Schaltschränke)
- Ausreichende Lüftung
- Berücksichtigung der technischen Einrichtungen (Geräte, Leitungen usw.) im Zusammenhang mit konstruktiven und statischen Belangen

FH O/O/W-Standort Oldbg.	Kapitel VI: Aufstellräume für Feuerungsanlagen /	Energie-, Gebäudetechnik
FB Architektur - WS 06/07	Heizräume / Brennstofflagerräume	DiplIng. Uwe Mayer

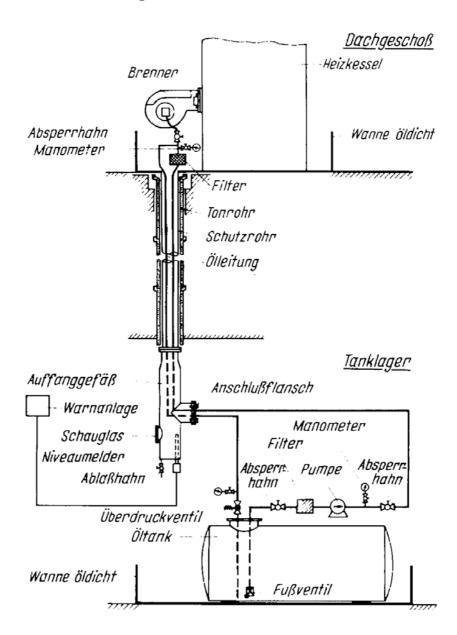
- Unterbringung der erforderlichen Abgasanlagen bzw. Schornsteinen und Verbindungsstücke zur Abgasabführung (Material, Querschnitte)
- Beherrschung der Geräuschemissionen, z.B. durch die Anordnung der Heizzentrale gegenüber empfindlichen Räumen
- Ermöglichung von Brennstoffzufuhr und Lagerung sowie Abtransport der Verbrennungsrückstände
- Anschlussmöglichkeiten für Energie, Wasser und Abwasser

Die nachfolgend aufgeführten Räume sind in der Nähe des Aufstellraumes der Feuerstätten anzuordnen:

- Brennstofflagerraum
- Räume für Heizungsverteilung mit Pumpen, Meß-, Steuer- und Regelanlagen
- Räume für zentrale Wassererwärmungsanlagen
- Gegebenenfalls Räume für zentrale Wasserversorgungsanlagen mit Druckerhöhung, Kältemaschinenzentrale, Versorgungseinrichtungen für elektrische Energie, Sozialräume usw.

Besondere bauliche Anforderungen für Dachheizzentralen:

- Erhöhte Deckenlast durch die Wärmeerzeuger und Anlagenteile (Ausdehnungsgefäße, WW-Speicher, Verteilungen usw.) beachten
- Erhöhte Schallschutzmaßnahmen am Kessel, Brenner und der Abgasanlage vorsehen
- Genügend große Öffnungen für das Einbringen der Kessel und Anlagenteile vorsehen
- Aufzüge bis in die Etage der Heizzentrale vorsehen
- Der Fußboden der Heizzentrale ist wasserdicht auszuführen, einschließlich der eventuell erforderlichen Rohrdurchführungen
- Die Türen sind mit Schwellen zu versehen
- Die Schmutzwassereinläufe sind so zu bemessen, daß der gesamte Wasserinhalt der Behälter und Rohrleitungen kurzfristig ablaufen kann


Besondere Anforderungen für Dachheizzentralen beim Einsatz von Heizöl als Brennstoff:

- In der Heizzentrale darf nur ein Behälter für den Tagesbedarf und bis max. 1 m³ aufgestellt werden
- Der Behälter muß eine Überlaufleitung haben, die ohne Absperrung in den Lagerbehälter geführt werden muß
- Die ölführenden Leitungen sind innerhalb des Gebäudes mit Mantelrohren zu versehen
- Die Mantelrohre müssen in einen Auffangbehälter münden, der mit einer Überwachungsein-richtung versehen ist
- Der Fußboden der Heizzentrale muß öldicht sein
- Die Schmutzwasserabläufe müssen mit Heizölsperren versehen sein
- Unter dem Ölbrenner ist eine Ölauffangwanne zu installieren

In dem nachfolgenden Bild ist ein Anlagenschema dargestellt, aus der die vorgenannten Anforderungen hervorgehen.

Energie-, Gebäudetechnik Dipl.-Ing. Uwe Mayer

Ölleitungsschema für eine Dachheizzentrale

VI.3 Brennstofflagerräume für feste, flüssige und gasförmige Brennstoffe

Je Gebäude oder Brandabschnitt sind Brennstofflagerräume erforderlich für

- feste Brennstoffe \Rightarrow Menge mehr als 15.000 kg = 15 t,

- flüssige Brennstoffe \Rightarrow > 5.000 l < 100.000 l,

- Flüssiggas \Rightarrow > 14 kg < 6.500 l,

jedoch < 30.000 l je Gebäude oder Brandabschnitt.

FH O/O/W-Standort Oldbg.		Energie-, Gebäudetechnik
FB Architektur - WS 06/07	Heizräume / Brennstofflagerräume	DiplIng. Uwe Mayer

VI.3.1: Anforderungen an Brennstofflagerräume

Allgemein:

- Wände und Stützen, sowie Decken über und unter müssen feuerbeständig sein,
- Türen müssen mindestens feuerhemmend und selbstschließend sein,
- durch Decken und Wänden dürfen keine Leitungen geführt werden

Ausnahme: Heizungs-, Wasser- oder Abwasserleitungen

Räume für flüssige Brennstoffe (Heizöl EL, Dieselkraftstoffe):

- müssen gelüftet werden können,
- müssen von der Feuerwehr von außen beschäumt werden können,
- Bodenabläufe mit Heizölsperren oder Leichtflüssigkeitsabscheidern versehen,
- Kennzeichnungen an den Zugängen vorsehen:

"Heizöllagerung" bzw. "Dieselkraftstofflagerung".

Räume für Flüssiggas:

- müssen ständig wirksam belüftet sein,
- dürfen keine Öffnungen zu anderen Räumen haben (ausgenommen Türen),
- dürfen keine offenen Schächte oder Kanäle haben,
- der Fußboden muß allseitig oberhalb der Geländeoberfläche liegen,
- die Fußböden dürfen keine Öffnungen haben (z.B. Bodenablauf),
- Kennzeichnungen an den Zugängen "Flüssiggasanlage".

Brennstofflagerung außerhalb von Brennstofflagerräumen

Flüssige Brennstoffe (Heizöl EL, Dieselkraftstoffe) dürfen gelagert werden

- in Wohnungen: Behälter bis zu 100 l

Kanister bis zu 40 l

- in sonstige Räume: > 1.000 l < 5.000 l je Gebäude oder Brandabschnitt

Folgende Anforderungen müssen diese Räume erfüllen:

- keine anderweitige Nutzung,
- keine Öffnungen gegenüber anderen Räumen, ausgenommen Türen,
- Türen dicht und selbstschließend.
- Räume müssen gelüftet werden können,
- Bodenabläufe mit Heizölsperren oder Leichtflüssigkeitsabscheidern,
- Auffangraum vorsehen,
- mindestens 1m von Feuerstätten entfernt (ausgenommen bei Strahlenschutz).

Nach TRbF 210 - Läger - ist eine Lagerung von brennbaren Flüssigkeiten jedoch unzulässig,

- in Durchgängen und Durchfahrten,
- in Treppenräumen,
- in allgemein zugänglichen Fluren,
- auf Dächern von Wohnhäusern, Krankenhäusern, Bürohäusern und ähnlichen Gebäuden, sowie deren Dachräumen,
- in Arbeitsräumen.
- in Gast- und Schankräumen.

FH O/O/W-Standort Oldbg.	Kapitel VI: Aufstellräume für Feuerungsanlagen /	Energie-, Gebäudetechnik
FB Architektur - WS 06/07	Heizräume / Brennstofflagerräume	DiplIng. Uwe Mayer

Größenbestimmungen von Auffangräumen:

Bei Lagerung von mehr als 450 l im Gebäude sind Auffangräume erforderlich. Auffangräume können bestehen

- aus einer Wanne in der die Ölbehälter eingestellt werden oder

- aus einer Abmauerung des Raumes, wobei der Boden und die Wände mit einem ölbeständigen und ölundurchlässigen Anstrich versehen werden müssen **oder**
- der Aufstellraum wird als Wanne ausgebildet, wobei eine entsprechend hohe Schwelle im Eingang vorgesehen und der Boden und die Wände wie vor beschrieben behandelt werden muß.

Doppelwandige Ölbehälter mit Kontrolleinrichtung benötigen keinen zusätzlichen Auffangraum.

Auffangräume müssen mindestens fassen können

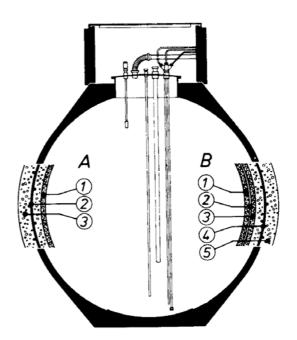
bis 2 Behälter: Rauminhalt des größten Behälters,

bis 3 Behälter: mind. 45 % des gesamten Lagerinhaltes, bis 4 Behälter: mind. 40 % des gesamten Lagerinhaltes, bis 5 oder mehr: mind. 35 % des gesamten Lagerinhaltes.

Kommunizierende Behälter gelten als ein Behälter.

Bei der Berechnung darf der Rauminhalt des größten Behälters mit einbezogen werden.

Die Ölbehälteranlage


Für die Lagerung von Heizöl stehen verschiedene Behälterbauarten und Bauformen zur Verfügung. In diversen DIN-Blättern sind die technischen Anforderungen dafür festgehalten.

Öllagerbehälter müssen von Fachfirmen aufgestellt werden.

Aufbau eines Beton-Kunststoff-Kugeltanks als 3-Wand-Sicherheitstank

A Aufbau eines Sicherheitstanks: 1 GFK-Innentank (fugenlos). 2 Bewehrung (durchgehend). 3 Beton aus einem Guß

B Aufbau eines Sicherheitstanks mit Leckwarngerät: 1 GFK-Innentank (fugenlos), 2 Testraum zum Anschluß eines Leckwarngeräts, 3 zweiter GFK-Innentank (fugenlos), 4 Bewehrung durchgehend, 5 Beton aus einem Guß

FH O/O/W-Standort Oldbg. FB Architektur - WS 06/07

Kapitel VI: Aufstellräume für Feuerungsanlagen / Heizräume / Brennstofflagerräume Energie-, Gebäudetechnik Dipl.-Ing. Uwe Mayer

DIN-Zuordnungen verschiedener Lagerbehälter

Bauart nach DIN	Behälterart	Zeichnung	Aufstellung	Verwendung
6608	Zylindrische Behälter liegend ein- und doppelwandig		außerhalb des Gebäudes unterirdisch	Lagerung kleinerer und mittlerer Mengen 1 bis 100 m ³
6616	Zylindrische Behälter liegend ein- und doppelwandig		außerhalb des Gebäudes oberirdisch	Lagerung kleinerer und mittlerer Mengen 1 bis 100 m ³
6617	Zylindrische Behälter liegend Form A		außerhalb des Gebäudes teilweise oberirdisch	Lagerung kleinerer und mittlerer Mengen 5 bis 100 m ³
6617	Zylindrische Behälter liegend Form B		außerhalb des Gebäudes teilweise oberirdisch mit freiliegendem Halsstutzen	Lagerung kleinerer und mittlerer Mengen 5 bis 100 m ³
6618	Zylindrische Behälter stehend ein- und doppelwandig		außerhalb des Gebäudes oberirdisch	Lagerung kleinerer und mittlerer Mengen 5 bis 100 m ³
6619	Zylindrische Behälter stehend		außerhalb des Gebäudes teilweise oberirdisch	Lagerung kleinerer Mengen 1,7 bis 6 m ³

FH O/O/W-Standort Oldbg.	Kapitel VI: Aufstellräume für Feuerungsanlagen /	Energie-, Gebäudetechnik
FB Architektur - WS 06/07	Heizräume / Brennstofflagerräume	DiplIng. Uwe Mayer

Bauart nach DIN	Behälterart	Aufstellung	Verwendung
6620	Batteriebehälter	im Gebäude	Lagerung kleiner Mengen 1 m ³ 1,5 m ³ 2 m ³
6622	Haushaltsbehälter	im Gebäude	620 L 1000 L
6623	Zylindrische Behälter stehend	außerhalb des Ge- bäudes oberirdisch	400-1000L
6624	Zylindrische Behälter liegend ein- und doppelwandig	Im und außerhalb des Gebäudes oberirdisch	Lagerung kleiner Mengen 1-5 m ³
6625	Rechteckbehälter (Keliergeschweißt)	Im Gebäude	2-100 m ³
4419	Runde Behälter mit flachem Boden stehend	außerhalb des Gebäudes oberirdisch	3-5000 m ³

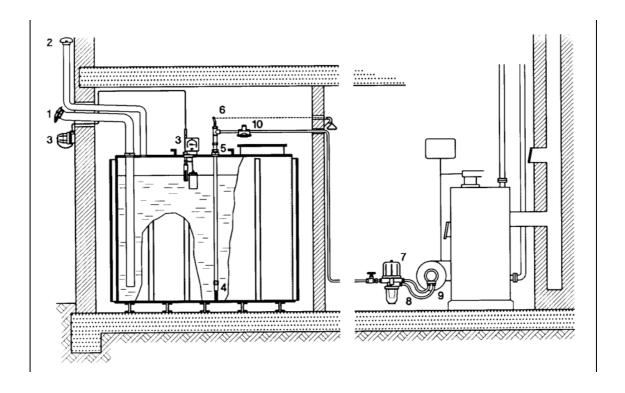
Mindestgröße der Brennstofflagerräume bei Tanks nach DIN 6620 und DIN 6625.

Lagermenge	Mindestgrundfläche in m²		
L	Batteriebehälter nach DIN 6620	Standortgefertigte Behälter nach DIN 6625	
2000	5,0	6,0	
4000	7,5	8,0	
6000	10,5	9,0	
8000	13,5	11,0	
10000	16,0	14,5	
15000	-	18,0	
20000		23,0	
25000	-	28,0	
30000	-	33,0	
40000	-	43,0	

Folgende Ausrüstungsgegenstände müssen für eine Tankanlage vorgesehen werden:

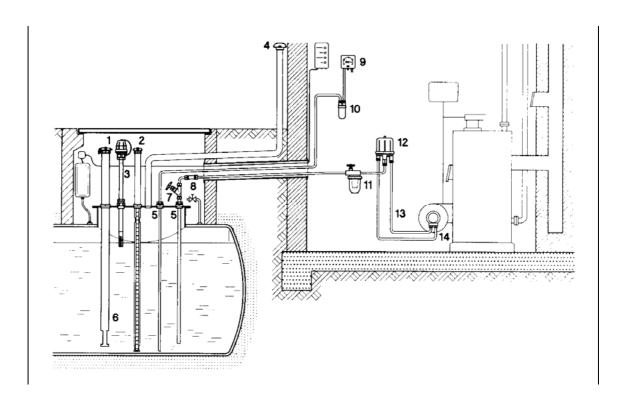
- eine Fülleitung mit Verschlußkappe,
- eine Lüftungsleitung,
- einen Grenzwertgeber als Überfüllsicherung,
- einen Flüssigkeitsstandsanzeiger.

Die nachfolgend aufgeführten Beispiele zeigen Öllagerbehälter mit den erforderlichen Ausrüstungsgegenständen:


Kapitel VI:	Aufstellräume für Feuerungsanlagen /
	Heizräume / Brennstofflagerräume

FH O/O/W-Standort Oldbg. FB Architektur - WS 06/07

Energie-, Gebäudetechnik Dipl.-Ing. Uwe Mayer


Beispiel einer oberirdischen Lagerung:

Kellergeschweißter Tank, Einstrangsystem mit Rücklaufzuführung, automatische Entlüftung

Beispiel einer unterirdischen Lagerung:

Einstrangsystem mit Rücklaufzuführung, automatischer Entlüftung und selbstüberwachender Saugleitung

FH O/O/W-Standort Oldbg. FB Architektur - WS 06/07

Flüssiggas darf gelagert werden:

- in Wohnungen: - Behälter mit nicht mehr als 14 kg,

- Fußboden allseitig oberhalb der Geländeoberfläche,

- keine Öffnungen im Fußboden,

- Bodenabläufe mit Flüssigkeitsverschluß.

VI.4 Jahres - Brennstoffbedarf

Die Berechnung der Kosten von Wärmeversorgungsanlagen ist den unterschiedlichen Rahmenbedingungen der Anwendungsbereiche anzupassen. Aufgrund dessen wurde die Richtlinie **VDI 2067 – Berechnung der Kosten von Wärmeversorgungsanlagen** – in Einzelblätter, abgestimmt auf die verschiedenen Anwendungsbereiche, unterteilt. Die derzeitige Fassung gliedert sich wie folgt:

Blatt 1: Betriebstechnische und wirtschaftliche Grundlagen

Blatt 2: Raumheizung

Blatt 3: Raumlufttechnik

Blatt 4: Warmwasserversorgung

Blatt 5: Dampfbedarf in Wirtschaftsbetrieben

Blatt 6: Wärmepumpen

Blatt 8: Blockheizkraftwerke (BHKW-Anlagen)

Im Blatt 2 erfolgt die Berechnung des Jahres-Heizwärmeverbrauchs für Heizungsanlagen. Neben einer ausführlichen Berechnung ist auch ein überschlägiges Berechnungsverfahren (Kurzverfahren) aufgeführt, welches als Grundlage für die Bestimmung von Lagergrößen für Brennstoffe ausreichend ist.

Kurzverfahren zur Berechnung des Jahres-Heizwärmeverbrauchs nach VDI 2067-Blatt 2 (Dez. 1993):

Der überschlägige Jahres-Heizwärmeverbrauch kann mit Hilfe von Jahres-Vollbenutzungsstunden nach folgender Formel ermittelt werden:

$$Q_{Ha} = f_v \times b_{VH} \times Q_{N,Geb}$$
 [kWh/a]

mit: f_V = Umrechnungsfaktor für die Vollbenutzungsstunden anderer Orte als Düsseldorf

Dusseldori

b_{VH} = Vollbenutzungsstunden gültig für Düsseldorf

Q_{N.Geb} = Wärmebedarf des Gebäudes

VDI 2067 Blatt 2 (Dez. 93) Seite 11:

Vollbenutzungsstunden b_{VH} für Überschlagsrechnungen gültig für Düsseldorf:

Gebäudeart	b _{VH}
Einfamilienhaus	2100
Mehrfamilienhaus	2000
Bürohaus	1700
Krankenhaus	2400
Schule, einschichtiger Unterricht	1100
Schule, mehrschichtiger Unterricht	1300

Umrechnungsfaktor f_V für die Vollbenutzungsstunden anderer Städte als Düsseldorf (Auszug aus dem Anhang A 7 – Meteorologische Daten und Rechenwerte – der VDI 2067 Blatt 2 (Dez. 1993) Seite 22 ff)

Ausgewählte Orte	Faktor f _V
Borkum	1,016
Bremen-Flughafen	1,054
Bremerhaven	1,047
Cuxhaven	1,047
Emden	1,031
Hamburg-Fuhlsbüttel	1,070
Hamburg-Wandsbek	1,062
Hannover-Flughafen	1,078
Kiel	1,054
List auf Sylt	1,031
Lübeck	1,078
Neumünster Schlesw.	1,078
Norderney	1,016
Oldenburg	1,047
Schleswig	1,070
Travemünde	1,078

Mit dem Jahres-Heizwärmeverbrauch läßt sich über die nachfolgende Formel der Jahres-Brennstoffverbrauch bestimmen:

$$B_{Ha} = Q_{Ha} / (H_u \times \eta_{ges})$$

mit: Q_{Ha} = Jahres-Heizwärmeverbrauch in kWh/a

H_u = Heizwert nach **Tabelle 1**

 η_{ges} = Jahresnutzungsgrad der Gesamtanlage nach **Tabelle 2**

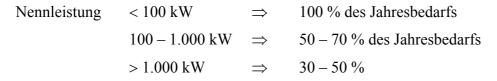
FH O/O/W-Standort Oldbg.	Kapitel VI: Aufstellräume für Feuerungsanlagen /	Energie-, Gebäudetechnik
FB Architektur - WS 06/07	Heizräume / Brennstofflagerräume	DiplIng. Uwe Mayer
	S	

 Tabelle 1:
 Heizwerte verschiedener Brennstoffe

Brennstoff	Heizwert H _u
Heizöl EL	10,0 kWh / 1
Stadtgas	4,5 kWh / m ³
Erdgas L	9,0 kWh / m³
Erdgas H	10,5 kWh / m³
Brechkoks	8,0 kWh / kg

Tabelle 2: Mittlerer Jahresnutzungsgrad von Kesselanlagen (ohne WW-Bereitung) unter Berücksichtigung von Betriebsunterbrechungen

Gesamt-Kesselleistung der Anlage kW	Baujahr des Heizkessels bis einschl. 1978				Baujahr des Heizkessels ab 1979									
	3			The state of the s				Betrieb mit gleitender Kesseltemperatur				Elektro- zentral- speicher	Elektro- Kessel	
	feste Brenn- stoffe	ÖΙ	Gas mit ohne Gebläse	mit	feste Brenn- stoffe	ÖI	ohne	Brenner mit Gebläse	Brenn-	ÖI	Gas mit ohne Gebläse	mit		
Umlauf-Gas-Wasserheizer < 37 Kessel < 50 ab 50 bis 120 ab 120 bis 350 ab 350 bis 1200	0,64 0,70 0,74 0,77	0,80	0,75 0,69 0,76 0,80 0,84	0,71 0,78 0,82 0,84	0,74 0,78 0,82 0,82	0,81 0,84 0,86	0,84 0,82 0,85 0,87 0,87	0,83 0,86 0,88	- 0,76 0,79 -	0,83	0,85 0,84 0,87	- 0,85 0,88 -	- 0,93 0,94 0,94 0,95	- 0,96 0,97 0,97 0,98


Heizöllagerung:

Der **Jahresbedarf für Heizöl EL** läßt sich auch vereinfacht über die nachfolgende **Faustformel** ermitteln (in 1 pro a):

$B_{\text{Ha}} \\$	$\approx Q_{N,Geb} \times 330$	\Rightarrow	für Einfamilienhäuser
$B_{\text{Ha}} \\$	$\approx Q_{N,Geb} \times 240$	\Rightarrow	für Mehrfamilienhäuser
$B_{\text{Ha}} \\$	$\approx Q_{N,Geb} \times 230$	\Rightarrow	für Bürogebäude
B_{Ha}	$\approx O_{N \text{ Geb}} \times 200$	\Rightarrow	für Schulen

Bei zentraler WW-Bereitung sollte für Wohnhäuser etwa 10-15 % zusätzlich veranschlagt werden (Sommerbetrieb).

Als Lagermenge sollte, bezogen auf die Nennleistung der Anlage, folgende Mengen veranschlagt werden:

FH O/O/W-Standort Oldbg.	Kapitel VI: Aufstellräume für Feuerungsanlagen /	Energie-, Gebäudetechnik
FB Architektur - WS 06/07	Heizräume / Brennstofflagerräume	DiplIng. Uwe Mayer

Kokslagerung:

Die zu lagernde Koksmenge läßt sich auch über den jährlichen Koksbedarf überschlägig nach folgender Faustformel ermitteln:

$$B_{Ha} \approx Q_{N,Geb} \times 400$$
 [B in kg/a und Q in kW]

Als übliche Lagermenge wird in etwa angenommen (1 t Koks beansprucht etwa 2 m³ Lagerraum):

bis 50 kW etwa 50 % des Jahresbedarfs bei 50 – 350 kW etwa 40 % des Jahresbedarfs über 350 kW etwa 30 % des Jahresbedarfs

Nachfolgende Größen können als Anhaltswerte für **Lagerflächen von Festbrennstoffen** herangezogen werden

(Werte gelten in etwa für eine 3-monatige Betriebszeit eines Tagesvollbetriebes mit Koksfeuerung bei 2 m Schütthöhe)

Nennleistung $\leq 50 \text{ kW}$ etwa 8 m² Grundfläche etwa 15 m² Grundfläche Nennleistung $\leq 100 \text{ kW}$ \Rightarrow etwa 75 m² Grundfläche $\leq 500 \text{ kW}$ Nennleistung \Rightarrow etwa 140 m² Grundfläche Nennleistung $\leq 1.000 \text{ kW}$ Nennleistung $\leq 1.500 \text{ kW}$ \Rightarrow etwa 200 m² Grundfläche